(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

double(0) → 0
double(s(x)) → s(s(double(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(s(x), y) → s(+(x, y))
double(x) → +(x, x)

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
double(s(x)) →+ s(s(double(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

double(0') → 0'
double(s(x)) → s(s(double(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(s(x), y) → s(+'(x, y))
double(x) → +'(x, x)

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
double(0') → 0'
double(s(x)) → s(s(double(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(s(x), y) → s(+'(x, y))
double(x) → +'(x, x)

Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
double, +'

They will be analysed ascendingly in the following order:
+' < double

(8) Obligation:

TRS:
Rules:
double(0') → 0'
double(s(x)) → s(s(double(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(s(x), y) → s(+'(x, y))
double(x) → +'(x, x)

Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
+', double

They will be analysed ascendingly in the following order:
+' < double

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

Induction Base:
+'(gen_0':s2_0(a), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(a)

Induction Step:
+'(gen_0':s2_0(a), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(+'(gen_0':s2_0(a), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(+(a, c5_0)))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
double(0') → 0'
double(s(x)) → s(s(double(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(s(x), y) → s(+'(x, y))
double(x) → +'(x, x)

Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

The following defined symbols remain to be analysed:
double

(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
double(gen_0':s2_0(n496_0)) → gen_0':s2_0(*(2, n496_0)), rt ∈ Ω(1 + n4960)

Induction Base:
double(gen_0':s2_0(0)) →RΩ(1)
0'

Induction Step:
double(gen_0':s2_0(+(n496_0, 1))) →RΩ(1)
s(s(double(gen_0':s2_0(n496_0)))) →IH
s(s(gen_0':s2_0(*(2, c497_0))))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(13) Complex Obligation (BEST)

(14) Obligation:

TRS:
Rules:
double(0') → 0'
double(s(x)) → s(s(double(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(s(x), y) → s(+'(x, y))
double(x) → +'(x, x)

Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n496_0)) → gen_0':s2_0(*(2, n496_0)), rt ∈ Ω(1 + n4960)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

(16) BOUNDS(n^1, INF)

(17) Obligation:

TRS:
Rules:
double(0') → 0'
double(s(x)) → s(s(double(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(s(x), y) → s(+'(x, y))
double(x) → +'(x, x)

Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)
double(gen_0':s2_0(n496_0)) → gen_0':s2_0(*(2, n496_0)), rt ∈ Ω(1 + n4960)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(18) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

(19) BOUNDS(n^1, INF)

(20) Obligation:

TRS:
Rules:
double(0') → 0'
double(s(x)) → s(s(double(x)))
+'(x, 0') → x
+'(x, s(y)) → s(+'(x, y))
+'(s(x), y) → s(+'(x, y))
double(x) → +'(x, x)

Types:
double :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s

Lemmas:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))

No more defined symbols left to analyse.

(21) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s2_0(a), gen_0':s2_0(n4_0)) → gen_0':s2_0(+(n4_0, a)), rt ∈ Ω(1 + n40)

(22) BOUNDS(n^1, INF)